viernes, 17 de octubre de 2008

lunes, 25 de agosto de 2008

COMPARACION LOGICA CABLEADA

Definición:
· la lógica cableada industrial es la técnica de diseño de pequeños a complejos autómatas utilizados en plantas industriales, básicamente con relés cableados. En la acepción de los técnicos en telecomunicaciones y en informática, la lógica cableada utiliza compuertas lógicas discretas (TTL, CMOS, HCMOS), para implementar circuitos digitales de comunicaciones y computadores.

· La lógica cableada industrial consiste en el diseño de automatismos con circuitos cableados entre contactos auxiliares de relés electromecánicos, contactores de potencia, relés temporizados, diodos, relés de protección, válvulas óleo-hidráulicas o neumáticas y otros componentes.

· Los cableados incluyen funciones de comando y control, de señalización, de protección y de potencia.

· La potencia además de circuitos eléctricos comprende a los circuitos neumáticos (mando por aire a presión) u óleo hidráulicos (mando por aceite a presión). Crea automatismos rígidos, capaces de realizar una serie de tareas en forma secuencial, sin posibilidad de cambiar variables y parámetros. Si se ha de realizar otra tarea será necesario realizar un nuevo diseño. Se emplea en automatismos pequeños, o en lugares críticos, donde la seguridad de personas y maquinas, no puede depender de la falla de un programa de computación.

· La lógica cableada más que una técnica, hoy en día constituye una filosofía que permite estructurar circuitos en forma ordenada, prolija y segura, sea en circuitos cableados o programados.

· La práctica de la lógica cableada ha sido asimilada por otras ramas de la tecnología como las telecomunicaciones y la informática, con la introducción del cableado estructurado en edificios, oficinas y locales comerciales, lugares donde es poco usual el manejo de esquemas y dibujos de las instalaciones eléctricas, excepto la de potencia, la elaboración de proyectos de detalle y el cableado en forma ordenada mediante el uso borneras y regletas, que pasaron a llamarse “patcheras” en el caso de las redes de datos y telefonía.

· Tecnología eléctrica.

Desventajas
· La tecnología cableada no es muy adecuada para implementar sistemas de control complejos. Los elementos que la forman son electromecánicos (en el caso de los relés), lo cual implica un número no ilimitado de maniobras (rompen) y la necesidad de implantar logísticas de mantenimiento preventivo.

· Ofrecían una gran dificultad para la búsqueda de averías (un cable que no hace contacto sigue estando visualmente junto al tornillo). Para facilitar la localización de averías se instalaban contactores y relés que señalizarán los fallos.

· A veces se deben realizar conexiones entre cientos o miles de relés, lo que implicaba un enorme esfuerzo de diseño y mantenimiento.

· Cuando se cambia el proceso de producción cambia también el sistema de control. Los tiempos de parada ante cualquier avería eran apreciables. Si saltaba una parada de emergencia, se tenía que reiniciar manualmente el sistema, dado que se perdía el estado de la producción.

· imposibilidad de realización de funciones complejas de control, gran volumen y peso, escasa flexibilidad frente a modificaciones, reparaciones costosas.

Ventajas
· Relés electromagnéticos, contactos accionados por bobinas.

· Módulos lógicos neumáticos, contactos accionados por aire.

· Tarjetas electrónicas, circuitos impresos con trts.

COMPARACION LOGICA PROGRAMADA


2.3.COMPARACION TECNOLOGIA CABLEADA


2.3.a.

Mecánica

Comprende el estudio de las máquinas, es la rama de la física que describe el movimiento de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas. El conjunto de disciplinas que abarca la mecánica convencional es muy amplio.
La mecánica es una ciencia física, ya que estudia fenómenos físicos. Sin embargo, mientras algunos la relacionan con las matemáticas, otros la relacionan con la ingeniería. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empírico como estas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática.
AREAS DE APLICACIÓN:
- Mecánica clásica
- Mecánica cuántica
- Mecánica relativista
- Teoría cuantica de campos

La mecánica clásica es una formulación de la mecánica para describir el movimiento de sistemas de partículas físicas de sistemas macroscópicos y a velocidades pequeñas comparadas con la velocidad de la luz.


Mecánica cuántica, conocida también como mecánica ondulatoria y como física cuántica, es una de las ramas principales de la física que explica el comportamiento de la materia. Su campo de aplicación pretende ser universal, pero es en lo pequeño donde sus predicciones divergen radicalmente de la llamada física clásica.


Con el nombre de Teoría de la Relatividad se engloban generalmente dos cuerpos de investigación en ciencias físicas, usualmente conectadas con las investigaciones del físico Albert Einstein: su Teoría de la Relatividad Especial y su Teoría de la Relatividad General.
La teoría cuántica de campos (o QFT por Quantum Field Theory) es una teoría que aplica las reglas cuánticas a los campos continuos de la Física, como por ejemplo el campo electromagnético, así como a las interacciones entre estos y el resto de la materia. Proporciona así un marco teórico usado extensamente en física de partículas y física de la materia condensada.






FUNCION EN LA AUTOMATIZACION:

Mecánica comprende el estudio de las máquinas (Polea simple fija)
Para otros usos de este término, véase Mecánica (desambiguacióN).

http://es.wikipedia.org/wiki/Cin%C3%A9tico

2.3.b.ELECTRONICA









Detalle de un circuito integrado SMD
La electrónica, es la rama de la física y fundamentalmente una especialización de la ingeniería que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.
Utilizando una gran variedad de dispositivos desde las válvulas termoiónicas hasta los semiconductores. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos, forma parte de los campos de la Ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología, se suele considerar una rama de la Física y química relativamente



SUS FUNCIONESEN LA AUTOMATIZACION:




La electrónica desarrolla en la actualidad una gran variedad de tareas. Los principales usos de los circuitos electrónicos son el control, el procesado, la distribución de información, la conversión y la distribución de la energía eléctrica. Estos dos usos implican la creación o la detección de campos electromagnéticos y corrientes eléctricas. Las máquinas eléctricas son parte importante de los sistemas
Industriales, esencialmente para la transformación de energía eléctrica en mecánica y/o viceversa. La automatización electrónica se caracteriza por el empleo de componentes electrónicos tales como: puertas lógicas, registros de desplazamiento, temporizadores, contadores, biestables, multiplexores/de multiplexores, sumadores, etc.

















AREAS DE PALICACION:
- Electrónica de control
- Telecomunicaciones




- Electrónica de potencia

2.3.c.ELECTRICA

Energía eléctrica

Consumo de energía eléctrica por país, en millones de Kwh. Se denomina energía eléctrica a la forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos —cuando se los pone en contacto por medio de un conductor eléctrico— y obtener trabajo. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía luminosa o luz, la energía mecánica y la energía térmica.


Su uso es una de las bases de la tecnología utilizada por el ser humano en la actualidad.
La energía eléctrica se manifiesta como corriente eléctrica, es decir, como el movimiento de cargas eléctricas negativas, o electrones, a través de un cable conductor metálico como consecuencia de la diferencia de potencial que un generador esté aplicando en sus extremos.


Cada vez que se acciona un interruptor, se cierra un circuito eléctrico y se genera el movimiento de electrones a través del cable conductor. Las cargas que se desplazan forman parte de los átomos de— que se desea utilizar, mediante las correspondientes transformaciones; por ejemplo, cuando la energía eléctrica llega a una enceradora, se convierte en energía mecánica, calórica y en algunos casos luminosa, gracias al motor eléctrico y a las distintas piezas mecánicas del aparato.

La generación de energía eléctrica es una actividad humana básica, ya que está directamente relacionada con los requerimientos actuales del hombre. Todas la formas de utilización de las fuentes de energía, tanto las habituales como las denominadas alternativas o no convencionales, agreden en mayor o menor medida el ambiente, siendo de todos modos la energía eléctrica una de las que causan menor impacto.